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Abstract. For the analysis of the dynamics of game playing populati-
ons, it is common practice to assume infinitely large populations. Infinite
models yield predictions of fixed points and their stability properties. Ho-
wever, these models cannot demonstrate the influence of genetic drift,
caused by stochastic sampling in small populations. Instead, we propose
Markov models of finite populations for the analysis of genetic drift in
games. With these exact models, we can study the stability of evolutio-
nary stable strategies, and measure the influence of genetic drift in the
long run. We show that genetic drift can introduce significant differences
in the expectations of long term behavior.

1 Introduction

1.1 Evolutionary Game Theory

Evolutionary Game Theory (EGT, overviews can be found in [1,2]) studies the
dynamics and equilibriums of games played by populations of players. The stra-
tegies players employ in the games determine their interdependent payoff or
fitness. In contrast with the traditional applications of game theory, the players
do not act rationally when choosing their strategies, but act instead according
to a preprogrammed behavior pattern. In this paper, a pure strategy is encoded
in an individual’s genome, which can evolve over time while repeatedly playing
a game against other players in a population.

A common model to study the dynamics of frequencies of strategies adopted
by these populations is based upon replicator dynamics. Replicator dynamics
assumes infinite populations, asexual reproduction, complete mixing, i.e., all
players are equally likely to interact in the game, and strategies breed true, i.e.,
strategies are transmitted to offspring proportionally to the payoff achieved.

We study two models from population genetics – a stochastic model of finite
populations and a deterministic model of infinite populations – and compare
their predictions in order to study the importance of finite population size when
the populations are involved in playing well-known symmetric 2×2 games, such
as the Hawk-Dove game, and the Prisoners’ Dilemma. We show the importance
and influence of finite population size on the predicted behavior, as compared to
infinitely large populations. Evolutionary games with small search spaces – such
as 2 × 2 games – are sufficient to investigate this question. Nowak and Sigmund
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[3] recently indicated the importance of finite population effects in EGT, and
expect that the observations of finite models might question the importance of
evolutionary stability of infinite models.

Both models studied in this paper assume discrete time steps, as compared
to the continuous progression through time of the differential equations used in
replicator dynamics. The discrete time steps denote the consecutive generations
of the evolving populations. Both models are based on the simple or generational
Genetic Algorithm (GA) where all individuals in the population of the current
generation are replaced by a newly produced population of individuals in the
next generation. As this creates a stochastic chain of events over time, where no
memory is required, both models can be seen as Markov models. The infinite
population model studied in this paper is based on the model studied by Vose
in [4], where the finite population model is based on the Fischer-Wright model,
originally described in [5,6], and its interpretation for the GA as outlined in [7,
8].

1.2 Finite Populations and Genetic Drift

When modeling evolving populations, the assumption of infinitely large popu-
lations vastly simplifies the computation and analysis of the predictions of the
models under consideration. A population can be represented as a frequency dis-
tribution, a stochastic vector, over the set of strategies or available genotypes.
The proportions of strategies at the next generation can easily be computed from
a population, using deterministic methods. Each resulting frequency distribution
then corresponds to an infinite population. In contrast, when studying finite po-
pulation models, we have to consider every possible population and compute
the limit or fixed point probability distribution over these possible states of the
system using stochastic finite Markov chain techniques. The number of possible
populations grows exponentially with population size and exceeds the number
of possible strategies. This complicates the computation and study of the finite
systems’ behavior.

As most populations in nature are very large, and infinite populations resem-
ble very large populations, the assumption of infinite populations seems to make
sense. Note that predictions of the finite population model approximate pre-
dictions of infinite population models if the finite population size is sufficiently
large. In this paper, we question the belief that predictions of infinite populati-
ons can indeed easily be translated to predictions of models that assume finite
populations. When large, but finite populations are considered, the populations
are expected to closely follow the dynamics as predicted by the infinite popula-
tion model. Small perturbations in the frequencies of large populations, caused
by elements of chance, are then also assumed to fade away easily in the following
generations. A finite population model can test whether these assumptions are
indeed acceptable for a given problem and finite population size.

Differences in the behavior of the models are expected due to stochastic
sampling effects of finite systems. The element of chance when selecting and ge-
nerating individuals has to be considered at the construction of each generation.
The combinatorial effects of limited population size or variation are more pro-
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nounced in models that assume smaller population sizes. This element of chance
can result in cumulative changes in the frequencies of evolutionary adopted ge-
notypes or strategies. This effect is known as genetic drift and is part of the
neutral theory of evolution [9]. With infinitely large populations, this element of
chance does not exist. Instead of sampling a distribution over strategies in order
to obtain the composition of a finite population at a generation, the distribution
itself represents the next expected infinitely large population.

1.3 Games

In this section, we briefly introduce a selection of well-known symmetric 2 × 2
games: a Neutral game, the Hawk-Dove game and the Prisoners’ Dilemma. These
games are used to discuss the influence of finite population size and genetic drift
on the predictions in finite models. All models assume a limited number of
strategies (2) that can be employed. As such, the strategies can be represented
as an atomic genotype with 2 alleles representing either strategy, which simplifies
our analysis. Extended overviews of these games can be found in [1,2].

Fogel et al [10,11,12] and Ficici et al [13] have studied finite population effects
of evolutionary dynamics on the stability of evolutionary stable strategies of the
Hawk-Dove game empirically. Using simulations of the evolutionary systems, be-
haviors have been observed that are unrelated to an evolutionary stable strategy
(ESS). They have suggested that ESSs may not provide a good expectation of
a finite population’s behavior. This paper presents a theoretical, Markov model
approach to answer the same questions for a larger set of games, adapting Fi-
cici’s initial work [13]. We adopt genetic drift, and the causes of genetic drift, as
an explanation of our theoretical observations.

All games are represented by a set of strategies Ω and a square payoff matrix
A. Each entry Ai,j in this payoff matrix gives the payoff value for an individual
adopting strategy i when confronted with an individual playing strategy j. We
assume that all payoffs in matrix A are strictly positive.

Hawk-Dove game. In this game, a bird has a choice of 2 behaviors when a
resource needs to be shared with another bird. It can either choose to act as an
aggressive hawk or a pacific dove. If both players choose the hawk strategy, they
fight and injure each other. If only one of both players chooses hawk, then this
player defeats the pacific strategy of the dove. If both players play dove, there is
a tie in profit, but the profit is lower than the profit of a hawk defeating a dove.

The Hawk-Dove game is also known as the snowdrift or chicken game.
The game can be modeled as a game with two strategies Ω = {H, D} (Hawk

and Dove), with a payoff matrix A where AH,H < AD,H < AD,D < AH,D.
Both pure strategies are unstable fixed points of the game if an infinite popu-
lation without variation is assumed. There also exists a mixed strategy that
is an ESS of the system if the proportion of Hawks in the population equals

AD,D−AH,D

AH,H+AD,D−AH,D−AD,H
.
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Prisoners’ Dilemma. Imagine two criminals who are arrested under the su-
spicion of a crime they have committed. The police doesn’t have enough proof
to convict them. The criminals are separately questioned. Both criminals must
choose to either cooperate with each other or to defect. If either one of the cri-
minals gives the police more evidence to convict the other, the defector is freed.
If both players cooperate, they receive only a short time in jail. If both players
tell out on each other, then the police has enough evidence to convict both. If
one player defects her cooperating opponent, the defector receives a high payoff,
and the cooperator spends a long time in jail.

Biological examples of the Prisoners’ Dilemma can be found in the behavior
of bacteriophage Φ6 and the evolution of ATP producing pathways [3].

Consequently, the game can be modeled with two strategies Ω = {C, D}
(Cooperate and Defect) with a payoff matrix A where AC,D < AD,D < AC,C <
AD,C . Both pure strategies are equilibrium strategies if no variation is assumed.
The fixed point where the whole population adopts defection is stable, and the
equilibrium where all players cooperate is unstable. There is no mixed strategy
equilibrium for this game.

Neutral game. The last game we introduce is used for control measurements,
and to show how the population behaves in the absence of selection. These
predictions give us an idea of how strong genetic drift can become for certain
parameters, as variation and sampling of the population are the only processes
at work in systems with neutral selection.

We can model a Neutral game with two strategies Ω = {0, 1} with a payoff
matrix A where A0,0 = A0,1 = A1,0 = A1,1. If no variation is assumed, all pure
and mixed strategies are fixed points of the game. If a variation operator – which
is symmetric for both strategies – is assumed, only the mixed strategy at 1/2 is
a stable fixed point of the game.

2 Models and Methods

In this section, we give an overview of the reproduction schemes used in our
evolutionary models. We also define the construction of new populations at a
new generation, using sampling techniques if finite populations are considered.

2.1 Populations and Fitness of Individuals

Let P denote a population of individuals of type 0 and 1. These types correspond
to the strategies in the games. Let p(i|P ) denote the proportion of genome i ∈ Ω
in P . For now, we do not have to assume a size for the populations, and make the
distinction between modeling of finite and infinite populations in a later section.

Let f(i|P ) with
f(i|P ) =

∑

j∈Ω

Ai,jp(j|P )

denote the fitness of individual i ∈ Ω. The fitness denotes the mean payoff
received when the individual is matched against all individuals in the population,
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including itself. As such, the fitness of an individual denotes the expected payoff
received when players are randomly chosen as opponents.

2.2 Selection

According to this fitness function, we can select an individual i ∈ Ω from popu-
lation P with selection probability s(i|P ) with

s(i|P ) =
f(i|P )p(i|P )∑

j∈Ω f(j|P )p(j|P )
.

This selection method renders selected genotypes proportional to their fitness
and abundance in population P . The denominator of the fraction is the expected
fitness or payoff received by any individual in the population.

2.3 Reproduction

Commonly, the next step in the reproduction process would be to recombine
these selected individuals in order to get recombined child individuals. Howe-
ver, since we are dealing with individuals with only one locus, there is no need
for discussing recombination here. It suffices to consider mutation. Let m(i|P )
represent the probability that an individual i ∈ Ω is generated by selecting
an individual from P , and then mutating it to i. More formally, if we assume
a bit flip mutation probability µ with 0 ≤ µ ≤ 1, we can write m(i|P ) as
m(i|P ) = µs(1 − i|P ) + (1 − µ)s(i|P ). Note that m(1 − i|P ) = 1 − m(i|P )
since we only have two possible individuals that can be generated. The resulting
probability m(i|P ) now denotes the probability that genome i ends up in the
population at the next generation.

2.4 Creating New Populations

Infinite populations. In the case of populations with an infinite number of
individuals, the above reproduction scheme directly yields the proportion of the
individuals in the population at the next generation. As such, population P ′ is
generated from P in one generation with p(i|P ′) = m(i|P ). The reproduction of
infinitely large populations is deterministic. The fixed points P̂ of this system,
with p(i|P̂ ) = m(i|P̂ ) can be derived, and their stability properties studied
in order to investigate the long term behavior of the game under evolutionary
selection and variation. The fixed point of 2 × 2 games can easily be found
through iteration of the infinite population model. Note that the population
with either p(0|P ) = 1 or p(1|P ) = 1 is a fixed point if µ = 0, and not a fixed
point otherwise.

Finite populations. In the case of populations with a fixed and finite number
of individuals, we have to sample the results of reproduction r times in order to
construct a population of size r at the next generation. With the introduction
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of a finite population size, the process is no longer deterministic and becomes
stochastic. The probability that population P ′ with population size r is generated
through sampling in one generation from population P is equal to

Pr [τ(P ) = P ′] =
(

r
rp(0|P ′)

) ∏

i∈Ω

m(i|P )rp(i|P ′).

The binomial coefficient computes the number of possible arrangements for a
population of size r whose proportion of 0 genomes equals p(0|P ′). The other
factors denote the probability that such an arranged population is sampled from
the reproduction process. Note that ∀i ∈ Ω : rp(i|P ′) ∈ N, since rp(i|P ′) re-
presents the number of individuals with genotype i in P ′. Note that the finite
model thus samples the infinite model r times.

As the number of possible populations, i.e. r + 1, is finite, we can study the
resulting system as a finite Markov chain, over the state space of populations,
with transition probability matrix T with entries TP ′,P = Pr [τ(P ) = P ′]. As
this system is irreducible and aperiodic, or ergodic, as 0 < µ < 1, we can obtain
the system’s limit behavior by computing the unique stochastic eigenvector of T
with associated eigenvalue 1. This stochastic vector denotes the limit or steady
state distribution over the states or possible populations of the system, and can
be used to study the expected behavior of the system as a whole. The limit
behavior of the system is undefined if µ = 0 or µ = 1. In the case of µ = 0,
the system becomes reducible, and the system ends in one of the populations
that consist of a unique genome (i.e., either the population with all 0 or all 1
individuals). In the case of µ = 1, the system becomes reducible and periodic, as
the population consisting of all 0’s can only become the population of all 1’s in
the next generation since all selected individuals are mutated from genome 0 to 1.
Vice versa, this also holds when the system is started with a population of all 1’s,
which results in a periodic system. In practice, we only assume 0 < µ ≤ 1/2, since
mutation probabilities above 1/2 work counterproductive for the evolutionary
process. Otherwise, all selected individuals would have a too high probability of
being mutated to less optimal genotypes.

2.5 Transitions

Figure 1 depicts the stochastic transition probability matrices of the finite model
and the deterministic transition functions of the infinite model, for r = 20 and
µ = 0.1. The payoffs of the Hawk-Dove game are chosen with AH,H = 1 <
AD,H = 2 < AD,D = 3 < AH,D = 4, and for the Prisoner’s dilemma the utility
function used in this paper is given by AC,D = 1 < AD,D = 2 < AC,C = 3 <
AD,C = 4. Each of the columns of the transition matrices of the finite population
models sums up to 1, as each column represents the probability distribution over
the states at the next generation. As the population size increases, the sampling
of the population at the next generation becomes more stable, and the stochastic
model better resembles the deterministic infinite population model. On the other
hand, if the rate of mutation is increased, the finite population model resembles
the infinite model less. This is due to higher probabilities to end up in other
population configurations then the most probable ones.
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(a) Neutral (b) Hawk-Dove (c) Prisoners’ Dilemma

Fig. 1. Transition matrices of the finite population model (r = 20), overlayed by the
deterministic map diagram (graph with white background) of the infinite population
model, for µ = 0.1. The horizontal axis represents the current proportion of (a) 0, (b)
Hawk or (c) Defect genomes in the population, the vertical axis represents the propor-
tion at the next generation. Each gray scaled box represents the transition probability
between states in one generation for the finite model. Darker grays represent higher
probabilities.

3 Results

3.1 Neutral Game

Given the Neutral game from section 1.3, figure 2 depicts the limit or fixed
point distributions of the finite population model, for a small set of population
sizes and mutation rates1. For all possible parameters, the weighted mean of the
distribution is equal to the predicted fixed point of the infinite model, namely
at 1/2. Figure 2(a) shows a typical distribution for (relatively) large population
sizes and large mutation rates. In this type, the system is most likely to end
up with highly diverse populations. Figure 2(c) shows a typical distribution for
systems with a small population size and a small mutation rate. In these cases,
a run of the system will most likely end up in either one of the populations filled
exclusively with either genome 0 or 1. Note that with these parameter settings,
the system prefers extremes of the state space, and avoids the predicted “stable”
fixed point of the infinite population model. Figure 2(b) shows a snapshot of the
transition from the first type to the second. Note that the behavior depicted in
these distributions is structurally very different, although the infinite population
model predicts the same stable fixed point for all of these evolutionary systems.
These differences in predicted behavior are due to genetic drift around this stable
fixed point. Drift is stronger as populations become smaller (more sampling
effects) or the mutation rate decreases (convergence due to low genetic diversity).

The weighted standard deviation σ of the steady state distributions’ means
can be employed to discuss the importance of genetic drift in our games with
1 As the predicted stable fixed point of the infinite model equals the weighted mean

of the distribution, the lines cannot be distinguished in these figures, but become
important as other games than the Neutral game are introduced.
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(a) r = 20, µ = 0.1 (b) r = 20, µ = 0.024 (c) r = 10, µ = 0.024

Fig. 2. Limit or steady state distributions for the Neutral game for 3 different para-
meter settings. The bars denote the probability of ending up in the population with
the given proportion of 0 genomes. The dashed vertical line denotes the weighted mean
of the distribution, the error bars the weighted standard deviation for this mean. The
dash-dotted vertical line gives the fixed point of the infinite population model. Note
that there is no standard deviation in the infinite model as the system is deterministic.

finite populations, and we are able to predict how the parameters are influencing
the system’s behavior. Later on, we use similar techniques to discuss genetic drift
in games with selective pressure, and can use the Neutral game as a control for
our predictions and expectations.

Influence of population size. Assume a fixed mutation rate µ with 0 < µ < 1
throughout this section. As population size r increases, the standard deviation
σ decreases. This is due to the genetic drift introduced by stochastic sampling
of the finite population, which becomes more deterministic for larger populati-
ons. Consequently, as the population size becomes larger, the finite population
model behaves more similar to the prediction of the unique stable fixed point
of the deterministic infinite population model, where σ = 0. Indeed, if we keep
on increasing the population size, then σ comes closer to 0, and the mean of
the distribution converges to the fixed point of the infinite population model2.
Note that this holds unless µ equals 0 or 1. If µ = 0, the limit behavior of the
finite model gives 2 attracting states, where the infinite model predicts a mixed
strategy fixed point.

Influence of mutation rate. In this section, we assume a fixed and finite
population size r. As the mutation rate in the system of evolving populations
for the Neutral game is sufficiently decreased, a run of the system most probably
ends up in either one of the populations with only one genome. Indeed, if a
mutation rate of 0 is assumed, the transition matrix of the evolutionary system
2 In the Neutral game, the fixed point of the infinite model and the mean of the finite

population are always the same. This statement is thus trivial for this game, but
becomes more important as there will be a difference between these two predictions
as other games are considered.
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becomes reducible, and the steady state distribution of the Markov chain is no
longer unique. If µ = 0, two linearly independent stochastic eigenvectors of the
transition probability matrix with corresponding eigenvalue 1 exist, and either
one of these eigenvectors represents a distribution where the evolutionary system
ends up with a population containing only one genotype. As the mutation rate
is sufficiently decreased toward 0, the predictions of the finite population model
better resemble the extreme situation where µ = 0, independent of the game
considered, as the selective pressure becomes negligible.

As the variational pressure for the Neutral game is increased, more random
individuals are generated by the reproduction process. In the extreme case, where
µ = 1/2, each generation renders a new random population with the probability
of either individual in this population being 1/2. At each step, a distribution over
the state space is constructed that is a binomial distribution. The probability
of encountering a population with n out of r individuals being of type 0 is then

given by
(

r
n

)
1
2

r. As this is the case for each of the generations during a run

of the system, it is also the limit or steady state distribution. Consequently, if
a mutation rate of 1/2 is assumed, the expected proportion of either genome
is 1/2, and σ becomes 1

2
√

r
. As the mutation rate is increased toward 1/2, the

finite population model better resembles the extreme situation where µ = 1/2,
independent of the game considered.

3.2 Hawk-Dove

The payoffs of the Hawk-Dove game have been chosen with AH,H = 1 < AD,H =
2 < AD,D = 3 < AH,D = 4. The stable fixed point of the infinite model with no
variation for these parameters lies at 1/2. Even more, if variation is assumed, the
stable fixed point remains at 1/2 and no other fixed points exist. Consequently,
the evolutionary system with this game is similar to the Neutral game, in only
having a stable mixed strategy fixed point at 1/2. When choosing extremely small
or large parameters for population size and mutation rate, so are the predictions.
Under those parameters, the forces of genetic drift are much stronger, or much
weaker, than those of selection according to the payoffs in the game. In the
Hawk-Dove game however, selection is asymmetric to either genome. This allows
a finite population to wander away from the infinite model’s projected “stable”
fixed point, which on its turn may result in genetic drift of the population. We
can study this effect, and the balance between selective and variational pressure,
by examining the differences in expected behavior.

Figure 3 represents the steady state distribution of the finite population mo-
del for the Hawk-Dove game, for three parameter settings of the system. Figures
3(a) and (b) show how the system balances between the selection around the
fixed point on one hand, and the influence of genetic drift which forces the popu-
lation to either extreme of its state space on the other hand. Figure 3(c) shows
how genetic drift can force the expected behavior of the finite population model
relatively far away from the infinite population’s predicted stable fixed point,
toward higher proportions of the Dove strategy. As the fixed points, means and
standard deviations of the systems have been determined by exact techniques,



558 A.M.L. Liekens, H.M.M. ten Eikelder, and P.A.J. Hilbers

0 0.5 1
0

0.257

0 0.5 1
0

0.091

0 0.5 1
0

0.378

(a) r = 10, µ = 0.01 (b) r = 20, µ = 0.01 (c) r = 20, µ = 0.001

Fig. 3. Limit or steady state distributions for the Hawk-Dove game for 3 different
parameter settings. The horizontal axis represents the proportion of Hawk genomes in
the population. The vertical dashed line represents the mean of the distribution, where
the dash-dotted line represents the fixed point of the infinite model, as in figure 2.

it is clear that genetic drift can introduce significantly different behavior when
finite population sizes are considered. These predictions lose significance as po-
pulation size r or mutation rate µ is increased.

We need an explanation why small populations drift to higher proportions of
Dove. Consider two finite systems, with the same population size r and mutation
rate µ. The first system is initialized with a population with r/2− k Hawks, the
other is initialized with r/2 + k Hawks, with k strictly positive. The probability
of moving from these initial states to the state with a proportion of 1/2 Hawks
in n steps can be computed. The probability of reaching this state is higher when
starting with r/2+k Hawks, where the system started with more Doves remains
longer stuck. On average, the overall system thus remains longer in states that
have a higher proportion of Doves. Genetic drift pushes the system to higher
proportions of Doves as compared to the infinite model. The observation that
populations drift toward higher proportions of Dove (and not the other way) is
similar to Ficici’s [13] observation of this effect in simulation runs and an infinite
model of the Hawk-Dove game.

We can thus summarize that predictions of long term behavior differ signifi-
cantly when infinite and finite models are compared, and that genetic drift gives
a viable explanation of these deviations.

3.3 Prisoners’ Dilemma

Genetic drift can also be observed in other games, such as the Prisoners’ Di-
lemma. However, the influence of drift differs from the previous games. If no
variation is assumed, there is one stable pure strategy (Defect) and there is no
mixed strategy ESS. As a result, we expect the populations to contain a lot of
the Defect genomes on the long run, even if variation is assumed. The effects
of genetic drift observed in the previous games are different in the Prisoners’
Dilemma. In the previous games, selective pressure pulls the populations toward
diverse populations, as the stable ESS of those games is a mixed strategy. At
the other end, genetic drift pushes instantiations of the system to less diverse
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Fig. 4. Limit or steady state distributions for the Prisoners’ Dilemma game for 3
different parameter settings. The horizontal axis represents the proportion of Defect
genomes in the population.

populations, such that one strategy becomes prominently abundant in the popu-
lation. In the Prisoners’ Dilemma, the behavior in the finite model is expected
to concentrate on populations with one strategy (Defect), where genetic drift
moves populations to more diverse configurations.

Figure 4 depicts steady state distributions of the finite population model
when the individuals are involved in the Prisoners’ Dilemma, for a number of
parameter settings. As predicted by the infinite model, the distributions are ex-
pected to have a large proportion of Defect genomes. As the population size is
increased, the expected behavior of the system better resembles the expected
infinite population behavior, and the standard deviation σ around the weighted
mean of the expected distribution over the states decreases. As we increase the
rate of mutation, σ increases, as the generation of random individuals tends to
push the populations to more diverse configurations. Note that this observation
contrasts with the expected behavior in the previous games, where higher varia-
tion resulted in predictions that better resembled the infinite population model.
Of course, in these other games, selective pressure and a high mutation rate both
guide the system to more diverse populations. For small population sizes and
small mutation rates, the predictions of the infinite population model are thus
more stable for the Prisoners’ Dilemma as compared to the influence of genetic
drift in the Neutral and Hawk-Dove game.

In the Prisoners’ Dilemma, the Cooperate strategy is rationally the optimal
strategy, if all other players in the game also opt for this strategy. In an evolu-
tionary system, however, this pure strategy is an unstable ESS. Only for small
population sizes and extremely small mutation rates, the finite population mo-
del predicts a noticeable proportion of Cooperate genomes in the populations.
Figure 4(a) gives an example of a small probability of ending up in a population
filled with the Cooperate genome.
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4 Conclusions and Future Work

We have proposed stochastic models of finite populations to study the stability
of evolutionary stable strategies for a set of 2 × 2 games. When the assumption
of infinitely large populations in evolutionary models is discarded, statistically
significant differences in expected behavior can be observed. In particular, the
long term expectations of the finite model differ from the predicted fixed points
of the infinite model. We adopted genetic drift to give a viable explanation for
the deviation from the fixed points predicted by infinite population models. We
have shown that finite population models can be used, and extended, to study
the stability of evolutionary “stable” strategies in finitely sized populations.

In future work, we intend to investigate the relationship between mutation
rate and population size in terms of genetic drift. We are currently studying
larger games and larger populations to check the scalability of our observations.
Similarly, we are interested in the influence of differing selective pressure on the
amount of genetic drift, where a fixed selective pressure was chosen in this paper.
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